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Self-organized criticality involving vector fields and random driving
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The effects of vector fields and random driving on the self-organized critical state are investi-
gated using cellular-automaton simulations and scaling arguments. It is found that the vector-field
dynamics are very similar to those for the scalar-field case: one field component dominates the evo-
lution for a wide range of parameters, with the other components slaved to it. The self-organized
critical state is also found to be extremely robust with respect to randomness in the driving, but it
eventually breaks down when randomization destroys the critical correlations faster than they can

be established.

PACS number(s): 05.50.4+q, 05.70.Jk, 05.90.4+m

I. INTRODUCTION

Bak et al. [1] proposed the concept of self-organized
criticality (SOC) to explain the widespread occurrence
of scale-invariant, power-law correlations in nature, as
typified by 1/f noise. Since it was first recognized in a
model of avalanches in sandpiles, SOC has been applied
to phenomena ranging from forest fires to electrical noise
and earthquakes and the basic sandpile-type model has
proved to be particularly versatile. This model illustrates
the emergence of a unique critical state in which there ex-
ists a statistical balance between instability due to driv-
ing (e.g., via addition of sand grains for sandpiles), and
relaxation (e.g., via avalanches in sandpiles) when insta-
bility sets in. This state exhibits power-law correlations
in space and time.

Many authors have carried out cellular-automaton sim-
ulations of the properties of the model of Bak and co-
workers [1-8], or analytic calculations involving it or its
continuum counterparts [3,4,9-11]. Many physical sys-
tems involve vector fields. However, virtually all work
on self-organized criticality to date has been concerned
with the scalar case. The one example of vector-field
SOC considered in the literature involved the buildup of
magnetic energy in the solar corona, balanced by release
in solar flares [12], but the properties of vector-field SOC
have not been considered in any detail to date. In a simi-
lar vein, most work on SOC has involved discrete models
for which the field takes on one of a few (usually two or
four) integer values. Zhang [4] showed that continuously-
valued fields display very similar and robust behavior. In
his work the SOC state persisted even when the size of
the grains added to the sandpile was a random variable.
He argued that randomness in the driving was relatively
unimportant, but did not explore this point in detail to
determine the limits of SOC behavior.

In this paper we investigate the properties of the SOC
state for a sandpile-type model, concentrating on the
effects of vector fields and randomized driving in two-
dimensional systems. In Sec. II we define the model dis-
cussed in this work. Section III is then concerned with
investigating the properties of scalar SOC and compar-
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ing them with the vector case. Finally, in Sec. IV, we
investigate the robustness of SOC as the secular compo-
nent of the driving (the mean grain size for sandpiles)
is decreased relative to the random part (randomness in
the grain size for sandpiles).

II. THE MODEL

The model investigated here involves a D-component
vector field h defined on a two-dimensional square grid.
The driving step consists of adding a field increment
(“sand grain”) g to a randomly chosen site, labeled (z, ),
with

h(z,7) - h(3,j) + & (1)
The increment g is a random variable, with the mean
satisfying
N_ o oI=1
w={4 137 )

Each component of g also has an additive random part
uniformly distributed between —A and A. The choice of
g1 to be the only component with a nonzero mean does
not imply any loss of generality because the coordinates
defining the field components can always be rotated to
bring (g) into the form given by (2).

Relaxation occurs when the addition of a grain causes
h(i,7) = |h(7, 5)| to exceed a critical value, which we set
equal to unity without loss of generality. The field at
the site (¢,7) then relaxes to zero, with its original value
being equally distributed to its four nearest neighbors,
thereby conserving h in this step. Some of these neigh-
bors may then become unstable and relax in turn (with
all unstable sites relaxing simultaneously), followed by
relaxations of more distant sites. Relaxation is allowed
to proceed until all sites are stable before the next height
increment is added. The size s of the avalanche is defined
to be the total number of different sites to undergo relax-
ation, while the activation number a is the total number
of relaxations, accounting for multiple relaxations at a
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given site. The triggering condition |h| > 1 used here
is slightly different from the condition & > 1 (or a close
analog) used in previous works on scalar fields. This
modification is necessary to treat the vector case, but
makes little difference for scalar fields, except for y ~ 0
(see Sec. IV).

The (open) boundary condition used is that h(Z, j) =
0 for all sites on the edge of the grid. In the case of
a sandpile, this implies that grains that reach the edge
fall off and leave the pile, thereby enabling a statistically
steady state to be attained.

One point that is worth noting is that in this model it
is the magnitude (“height”) of the field that determines
instability, rather than the slope, as would be expected
for a sandpile. Bak et al. [1,2], for example, originally in-
troduced a height function as a simple proxy for the mean
slope, not to represent the height directly. This has the
advantage of numerical speed and simplicity, although
the true height of the pile is not uniquely determined by
the mean-slope values, except in one dimension.

III. THE SOC STATE

The first part of our analysis is to establish that the
model under consideration displays self-organized crit-
icality, and to investigate the properties of this state,
comparing them with results obtained by previous au-
thors. Scalar SOC is considered in Sec. III A, while the
vector case appears in Sec. III B.

A. Scalar self-organized criticality

A system of size N x N, with N =200 and D = 1, was
driven by adding increments with 4 = 0.16 and A = 0.4
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FIG. 1. Self-organized critical state in a system with
D =1,p=016, A = 04, and N = 200. (a) Distribu-
tion D(s) of avalanche sizes vs s. (b) Distribution D(a) of
activation numbers vs a. (c) Scatter plot of a vs s for several
thousand avalanches.
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until it reached a statistically steady state. Figure 1(a)
shows the subsequent distribution D(s) of avalanche sizes
s in this state. This distribution is seen to be a power law
over approximately three decades, truncated by finite-
size effects above s ~ 1035, with

D(S) ~ sl—Ta (3)

and 7 ~ 2.23 + 0.05 for s < 1035. The power-law statis-
tics are indicative of self-organized criticality. Figure
1(b) shows the distribution D(a) of activation numbers
a. This is seen to be a power-law over four decades, with

D(a) ~a'™*, (4)

and a = 2.25 £ 0.05 for a < 10*°.

A scatter plot of a vs s is shown in Fig. 1(c). For
s <100, a = s is satisfied, subject to the strict inequality
a > s. However, for s > 300, the scatter plot changes
slope, with

a ~ s5a’ (5)

and 6, = 1.52 £ 0.10. Comparison with systems of dif-
ferent sizes shows that this change in behavior is not a
finite-size effect, since the breakpoint is independent of
N and occurs for s below the point where finite-size ef-
fects truncate D(s). Physically, the transition occurs at
the point at which multiple activations of individual sites
first become important: for small avalanches such reacti-
vations are unimportant and transport is directed chiefly
outward from the initial unstable site, but they dominate
at large s where a > s is satisfied. Equations (3)—(5) im-
ply that é,, 7, and a are related, with

a=2+(r—2)/8,. (6)

This result means that the breakpoint in Fig. 1(b) should
correspond to a breakpoint in Fig. 1(c). The predicted
change in a from 2.23 to 2.15 as a increases is not clearly
distinguishable, given the uncertainties, but there is a
slight reduction in slope for 3.5 < log,ga < 4.5.

The values of 7 and a determined above lie toward the
upper end of the range 2.0 £ 0.1 to 2.2 £ 0.1 of estimates
obtained for similar systems by other authors [1,4-8,10],
concurring reasonably well with the numerical estimate
T = 2.22 by Manna [7] and the dynamical renormal-
ization group result 7 = 13/6 [10]. Zhang argued for
T = 2 assuming that all avalanches locally transfer equal
amounts of energy, regardless of size [4]. This prediction
is not borne out for the present model; however, we note
that Christensen et al. [8] showed that slight changes to
the driving and/or boundary conditions can shift expo-
nents for a similar (but discrete) model within the range
2.0 to 2.2.

In the SOC state, we find the mean of h; to be
(h1) = 0.62 £ 0.01 for a wide range of values of p and A,
discussed further in Sec. IV, in excellent agreement with
Zhang’s result for a similar model [4]. Figure 2(a) shows
the distribution D(h;) of h; in the SOC state, again for
N = 200, 4 = 0.16, and A = 0.4. As noted by Zhang
for his model [4], a series of narrow peaks are seen at
h; = 0, 0.31, 0.62, 0.93, despite the randomness in the
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FIG. 2. SOC distribution and CDF of h,; for the same sys-
tem as in Fig. 1. (a) Distribution D(h;) of hy. (b) Cumulative
distribution Fcpr(hi1) of hy.

driving. Zhang [4] developed a theory for these peaks.
Generalizing to vector fields, his argument was that a
given site receives increments in h; of size ¢ each time
one of its neighbors relaxes during an avalanche, thereby
leading to the observed peaks. Here we note that un-
stable sites redistribute their h values equally to their
2d nearest neighbors as soon as they pass the instability
threshold |h| = 1. This implies

(2d —1)g < 1 < 2dq. (7)

Values of g toward the extremes of this range will tend
to be eliminated as avalanches mix together contributions
from various sites. Hence, taking an average of (7), we
find
4d — 1
N —. 8
1% 4d2d - 1) ®)

For d = 2, this yields ¢ ~ 0.29, in good agreement with
the observed value of 0.31.
Figure 2(b) shows the cumulative distribution function

m
D(hy)dhi, 9)

-1

Fepr(hy) =

as a function of hy. It is seen that a negligible number
of sites have h; < 0, even though A exceeds p in the
driving. The implication is that avalanches rapidly elim-
inate negative values of h; as they organize the system
into the critical height distribution shown in Fig. 2(a).
Most of the sites are clustered around the sharp peaks in
D(h;), as was noted for Zhang’s model [4], with fractions
0.08, 0.19, 0.36, and 0.37 in the four peaks (in order of
increasing h;). These values are consistent with those
of Zhang [4] who found corresponding fractions of 0.10,
0.16, 0.32, and (correcting an apparent typographical er-
ror) 0.42. Analytical calculations on a discrete model of
SOC [11] yielded a value of 0.074 for the first peak, and
results which we find to be consistent with the ranges
0.13-0.31, 0.13-0.40, and 0.31-0.66 for the other three
peaks, respectively. These values are all consistent with
our numerical results for continuously-valued fields.

B. Vector self-organized criticality

A simulation with a two-component field (D = 2) for
N = 200, p = 0.16, and A = 0.4 yields results nearly
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identical to those in Fig. 1 for D = 1. In particular, the
results 7 = 2.22+0.05, o = 2.27+0.05, §, = 1.55+0.10,
and (h;) = 0.62 £ 0.01 are all the same as for D = 1
to within their uncertainties. The distribution of h; was
also found to be very similar to that shown in Fig. 2(a)
for the case D = 1, the only noticeable differences being
slight changes in the heights of the various peaks, while
the fractions of sites corresponding to the peaks remain
essentially constant. These results imply that the be-
havior of the SOC state is dominated by the evolution
of hy, which proceeds as for D = 1 for the parameters
considered.

If the SOC dynamics are indeed dominated by the be-
havior of hq, the scaling of o(h2) can be related to trans-
port in the system by the following argument: The mean
rate of increase in (h;) (per added increment) due to ad-
dition of field increments is proportional to p. In the
SOC state, this must be balanced on average by losses,
which thus satisfy

d(h1)
dn

X — L. (10)

The form of the relaxation mechanism ensures that trans-
port of hZ proceeds in tandem with transport of h;, be-
cause all components of h relax together at each unstable
site. Hence, in parallel with (10), we find losses of

d(h3) (h3)
in ™ _“<hf>'

These losses must balance the rate of input of (h2), which
is proportional to A2, giving

(h3) ox A?/p. (12)

Figure 3 shows o(hy), the RMS value of hy, as a
function of 1/N for 20 < N < 200 for o = 0.08 and
A = 0.2. Extrapolation of the observed linear trend
yields o(hy) = (h2)Y/2 = 0.012 £ 0.001 in the limit
N — oo. The scalings of o(hy) with p and A are ex-
plored in Fig. 4 for N = 100 and D = 2. Combining
these results, we find

(11)

1.98+0.02

o%(hg) ~3x 1074 (13)

1.01£0.03°
m

for N — oo, with the scalings being in reasonable agree-
ment with (12). The uncertainties in (13) are those of
the least-squares fit to the data points shown.

Figure 5 shows the variation of 7, (h;), and

1/2
1 &,
o= D_lj;a(hj) , (14)

as functions of D for systems with 4 = 0.16, A = 0.4,
N =40,and D =1, 2, 3, 4, 6, 10, 15, and 20. There is
little if any variation in 7 with D, while (h;) decreases
slowly as D increases. Contrastingly, o falls more steeply,
but the RMS total of all the components other than h;
continues to increase, with (D —1)/2¢ ~ 0.21 at D = 20.
The constancy of 7 implies that the SOC state survives
for the entire range of D investigated, despite the changes
in its mean parameters. Similar results for D = 1, 2, 3,



49 SELF-ORGANIZED CRITICALITY INVOLVING VECTOR . .. 1987

0.08 ! T

0.06 7

a(hy)
o
o
e

0.021 7

0.00 L -
0.00 0.02 0.04 0.06
1/N

FIG. 3. RMS value of hz, o(hz2), for D = 2, p = 0.16,
A = 0.4, as a function of 1/N. The solid curve is the line of
best fit.

6 were obtained for the same parameters with N = 100.

Figure 6 shows the h, distributions for the D =1, 2,
6, and 20 simulations from Fig. 5. In Fig. 6(a) we see the
four peaks first noted by Zhang [4]. As expected from
Sec. IIT A, Fig. 6(b) shows no sharp change with respect
to the scalar case. As D increases further, in Figs. 6(c)
and 6(d), the three peaks with h; > 0 broaden slowly and
decrease in height, while their separation also decreases
slightly. However, we find that the proportions of sites
corresponding to the peaks remain virtually unchanged.
Two differences between cases D = 1 and D >> 1 are that
the peak separation q decreases slowly with D, and the
number of sites with h; close to 1 decreases owing to the
decreasing fraction of parameter space corresponding to
hl =~ 1.

From the results in Figs. 5 and 6 we conclude that the
SOC state persists for vector fields, with its properties
changing only very slowly with D.

IV. EFFECTS OF RANDOM DRIVING

In the limit g — 0 we expect the random part of the
driving A to swamp the secular part, destroying SOC.
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FIG. 4. Dependence of o(hz) on A (triangles) and u
(squares) for D = 2 and N = 100. The value of u is fixed at
0.08 when determining the A dependence, while A = 0.4 is
fixed for the u dependence. Solid curves are lines of best fit.
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FIG. 5. Dependence of the SOC state on D. Squares
show 7 — 2, triangles show (h;), and diamonds show 10o
[cf. Eq. (14)].

This limit is investigated in this section.

A. Scalar case

One measure of the randomness in g is the ratio x of
the number, 1/, of secular increments required to trigger
relaxation at a site with A = 0 initially to the typical
number, 3/AZ, for random diffusion to bring about the
same outcome, giving

x = A%/3p. (15)

The quantity x is also important in determining o (h;) for
j > 1 (see Eq. (12)], with the data in Fig. 4 collapsing
onto a single line when plotted as a function of .

In Fig. 7 we plot (h;) and the standard deviation a(h;)
as functions of x for D = 1, A = 0.4, N = 100, and
0 < p < 0.32. The results show little change for x <
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FIG. 6. Height distributions in the SOC state for 4 = 0.08,
A =04, N=40. (a) D=1. (b) D=2. (c) D=6. (d)
D = 20.
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100, indicating the existence of an essentially unique SOC
state. For x 2 100, there is a steady change in this
SOC state, with (h;) decreasing and o(h,) increasing
with x. Figure 8(a) shows D(h,) for x = 267 and N =
100 from Fig. 7. The main feature is that the SOC peaks
are much smaller, broader, and less distinct than those
in Fig. 2(a), which had x = 1/3. The one exception
is that the peak at h; = 0 remains narrow because the
relaxation process yields sites with h = 0 exactly. The
corresponding cumulative distribution function is shown
in Fig. 8(b), from which it is seen that approximately
25% of the sites now have h < 0, due to the increasing
dominance of diffusion over secular driving. In Fig. 8(c)
we see that D(s) is truncated at s =~ 30 and no longer
has a clear power-law dependence on s, thus signifying
the breakdown of the SOC state.

The results in Figs. 7 and 8 indicate that the SOC state
breaks down as x increases, beyond about 100. As x in-
creases, randomization due to addition of grains between
avalanches is increasingly able to destroy the character-
istic SOC correlations [e.g., as reflected in the peaks in
D(h;)] which would otherwise be established by succes-
sive avalanches. For x > 100 no SOC state is established;
rather (h;) executes a random walk [a typical value of
|{h1)| for x = oo is shown at x = 1000 in Fig. 7(a)], while
o(h1) approaches an asymptotic value (= 0.45 here) de-
termined by the balance between driving and diffusive
(rather than critical) transport to the boundaries of the
system. Despite these comments, it is clear that the SOC
state is extremely robust, with x 2 100 required before
it is seriously affected by randomness.

B. Vector case

Figure 9 shows (h1), o(h1), and o(hg) for D = 2,
N =100, and A = 0.4 for 0 < p < 0.32 (as in Fig. 7, val-
ues for x = oo are plotted at x = 1000). The results for
(h1) and o(hq) are very similar to those in Fig. 7 and very
similar comments apply here. In addition, we note that
the breakdown in the SOC state occurs approximately
when o(hy) becomes comparable to (h;) and, beyond
this point, o(hy) = g(hz) > (h1). This suggests that the
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FIG. 7. Dependence of SOC state on x for N = 100, D =1,
and A = 0.4, showing (h:) (squares) and o(hi) (triangles).
Values for x = oo are shown at x = 1000.
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FIG. 8. Distributions of h; for x = 107, N = 100, and
D =1. (a) D(h1) vs hy. (b) Fcpr(hi) vs hs.

SOC state is disrupted when the degree of driver-imposed
disorder becomes significant, destroying the SOC corre-
lations faster than they can be established by avalanches.
This supports the remarks made in the previous subsec-
tion. The scaling o'(h2) o x*/2 [see Eq. (12)] breaks down
for x 2 10 and o(h;) saturates at =~ 0.4 as x — oco. Ar-
guments such as these imply that breakdown of the SOC
state should occur somewhat sooner at large D where the
disorder is greater, but the weak variations seen in Fig. 6
imply that it is not a strong effect.

The above results are all for N = 100. Figure 3 shows
that o decreases with N, but that it tends to a nonzero
limit as N — oo. Hence, we expect that SOC will persist
to somewhat higher values of x in larger systems, but
that the boundary of SOC behavior will tend to a finite
limit as N — oo.

V. SUMMARY AND DISCUSSION

This work has investigated the effects on self-organized
criticality of introducing vector fields and randomness in
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FIG. 9. Dependence of SOC state on x for N = 100, D = 2,
and A = 0.4, showing (h,) (squares), o(h1) (triangles), and
o(h2) (diamonds). Values for x = oo are shown at x = 1000.
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the driving of the system. Our model displays SOC in
both the scalar and vector cases. In the scalar case the
scaling exponents and other properties of the SOC state
are generally consistent with previous work on similar
models, albeit toward the upper end of the range of pre-
vious values. The scaling of the total number of relax-
ations with the size shows a breakpoint at a =~ 100, with
a significantly larger than s for larger sizes as multiple
relaxations become more important. The height distri-
bution displays four discrete peaks, as in Zhang’s model
[4], and the proportions of sites corresponding to each
peak are consistent with previous analytic and numerical
work on similar systems.

The behavior of vector-field SOC is dominated by the
evolution of the secularly-driven field component, and is
extremely similar to the scalar case. Other components
are slaved to the principal one, with their RMS values
scaling as x'/2 for x < 10. SOC behavior is only weakly

affected by the dimensionality D of the field, even for D
as large as 20.

The effects of random driving are weak for x < 100 for
both scalar and vector SOC. Beyond that point driver-
imposed randomization destroys SOC correlations faster
than they can be established via avalanches, causing the
SOC state to break down. Breakdown appears to occur
when the level of disorder imposed by the driving is ap-
proximately equal to the mean of h;, the principal field
component.

We conclude that the SOC state is extremely robust
over a wide range of parameters, but that large degrees
of disorder can nonetheless destroy it.
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